Idaho National

Laboratory

Development of a RELAP5-3D Property Library for Use by Other Computer Codes

C. B. Davis, Y. J. Choi, J. H. Forsmann

2015 IRUG Meeting Idaho Falls, ID August 13-14, 2015

Outline

- Background
- Input and output
- Automatic testing
- Results
- Conclusions and recommendations

Background

- RELAP5-3D contains more than 25 working fluids
 - Light and heavy water, gases (N₂, CO₂, etc.), liquid metals (Na, NaK, Bi-Pb, etc.), molten salts (FLiBe, FLiNaK, etc.), etc.
- "Exact" fluid properties calculated from an equation of state are contained in external tpf files for each working fluid
 - The tpf files are machine-independent binary files written in XDR format
 - Portable across different computer platforms
- To achieve fast running speed, RELAP5-3D obtains approximate fluid properties for internal calculations by interpolation
- The combination of a large number of working fluids, portable tpf files, and fast-running interpolators means that the RELAP5-3D data would be very useful to engineers and other computer programs if they were readily available

Background (cont'd)

- The purpose of this task was to develop an easily accessible library and driver programs that can determine fluid properties for any of the working fluids simulated by RELAP5-3D
- The following items were produced during this task
 - Property library (polate.a)
 - Interactive driver program (polate.x)
 - Driver program for automatic testing (polated.x)
 - Subroutine that can be called by other computer programs (polates.F)
 - Interpolating subroutine (stpuph.F) that can calculate metastable states for fluid h2on with independent variables of pressure (P) and specific enthalpy (h)

Background (cont'd)

 The polate library and driver routines are not used by RELAP5-3D but are now automatically placed in a new directory under the parent directory (i.e. r3d433is/polate)

Inputs for the polate routines

- Inputs identify the getstate subroutine to be used (istate), the fluid property number (fnum), two thermodynamic variables, a phase identifier (itin), and a logical flag (verify)
- istate is related to the name of the getstate subroutine

istate	Subroutine	First variable	Second variable
1	getstate1	Quality	Temperature (K)
2	getstate2	Quality	Pressure (Pa)
3	getstate3	Temperature (K)	Pressure (Pa)
5	getstate5	Specific enthalpy (J/kg)	Pressure (Pa)
6	getstate6	Specific internal energy (J/kg)	Pressure (Pa)

- fnum is the fluid number
 - For example, 1 = h20, 12 = h20n, 18 = h2095, 28 = r134a

Inputs for the polate routines (cont'd)

- Phase identifier (itin)
 - -1 = liquid
 - -2 = two-phase
 - -3 = vapor
 - 4 = supercritical
- The phase identifier can be used to force the calculation of equilibrium two-phase properties or metastable properties
- If verify is true, numerical derivatives of state properties are calculated and compared with analytical derivatives
 - Normally used only during automatic testing
 - The numerical derivatives are finite difference approximations obtained by making two calls to *polate*, one with a nominal independent variable (i.e. P, h, etc.) and one in which the nominal value is perturbed by a factor of 1.000001

Outputs for the polate routines

- The s array, which contains thermodynamic and transport properties
 - The entire s array is generally not consistent with the definitions contained in mnemod.F90
 - Some variables are either not updated or contain the results of intermediate calculations
 - The polate routines place NaN, Not a Number, in the positions that are not consistent with mnemod.F90 to prevent the use of invalid thermodynamic data
- The output fluid state, it
 - Has the same meaning as itin
- A logical flag, err, that is set to true when an error has occurred
 - For example, if one of the input thermodynamic properties exceeds the bounds in the *tpf* file

Outputs for the polate routines (cont'd)

- Analytical property derivatives that are functions of basic thermodynamic data
 - istate = 1

•
$$\frac{dP^S}{dT}$$
, $\left(\frac{dh_f}{dT}\right)$, $\left(\frac{dh_g}{dT}\right)$

- istate = 2

•
$$\frac{dT^S}{dP}$$
, $\left(\frac{dh_f}{dP}\right)$, $\left(\frac{dh_g}{dP}\right)$

- istate = 5

•
$$\left(\frac{\partial \rho}{\partial h}\right)_P$$
, $\left(\frac{\partial T}{\partial h}\right)_P$, $\left(\frac{\partial \rho}{\partial P}\right)_h$, $\left(\frac{\partial T}{\partial P}\right)_h$

-istate = 6

•
$$\left(\frac{\partial \rho}{\partial U}\right)_P$$
, $\left(\frac{\partial T}{\partial U}\right)_P$, $\left(\frac{\partial \rho}{\partial P}\right)_U$, $\left(\frac{\partial T}{\partial P}\right)_U$

Corresponding numerical derivatives are calculated if verify = true

Outputs for the polate routines (cont'd)

 For istate = 5 or 6, property derivatives can be calculated for equilibrium single-phase states, metastable single-phase states, or equilibrium two-phase states

Testing

- Testing procedures were developed that use polated.x to perform automatic testing during code installation
- These testing procedures used Linux scripts, input files, and AptPlot scripts
- Testing was performed for three light waters (h2o, h2on, h2o95) and one refrigerant (r134a) for both liquid and vapor phases
- Testing was performed for istate = 1, 2, 3, 5, and 6
- Testing was performed for equilibrium and metastable single-phase properties

Testing (cont'd)

- The Linux script rundplt* (* = 1, 2, 3, 5, or 6)
 - Contains a list of input files
 - For each input file in the list, the script
 - Calls the driver program (polated.x) to generate thermodynamic results
 - Calls AptPlot scripts that generate graphs of the thermodynamic results
 - Makes output directories based on the name of the input file and moves the output files and figures into the designated directory
 - For example, rundplt1 contains T_h2o.i in the list, calls t.apt to plot saturated fluid properties as a function of temperature and td.apt to plot derivatives as a function of temperature, and moves the results into directory T_h2o_

polated.x reads the input files

- The input files use normalized or relative thermodynamic data
- This approach allows similar input files for the testing of different fluids (i.e. h2o and r134a)
- The input files use normalized temperatures with istate = 1

$$-T_N = \frac{T - T_{trip}}{T_{crit} - T_{trip}}$$

The input files use normalized pressures for istate = 2, 3, 5, and 6

$$-P_N = \frac{P - P_{trip}}{P_{crit} - P_{trip}}$$

polated.x reads the input files (cont'd)

- The input files use differential temperature relative to the saturation temperature for istate = 3, 5, and 6
 - $-\Delta T = T^s T$ for liquid and $\Delta T = T T^s$ for gas
 - Negative values correspond to metastable states while positive values correspond to the equilibrium state for the phase
 - The input differential temperatures are converted to specific enthalpy for *istate* = 5 and specific internal energy for *istate* = 6
- The user can easily change the input files to test other fluids, interpolators, or thermodynamic region

An example listing of input file PT_h2on_f.i for istate = 3 follows:

P-dT tables for P-h interpolator testing

3 for istate number (istate: 1 for T, 2 for P, 3 for P-T, 5 for P-h, 6 for P-u)

1 for phase identifier (itin: 1 is liquid, 3 is vapor)

12 for fluid type (fnum: 1 is H2O, 12 is H2O_N, 18 is H2O_95, 28 is SUVA)

6 PN as follows:

0.01 0.05 0.1 0.2 0.5 0.8

10 dT as follows:

1.0 5.0 10. 20. 25.0 30. 50.0 70. 90. 100.0

The output of the testing includes:

- Plots of single-phase state properties $(T, \rho, U, h, \beta, \kappa, C_P, S, \mu, \text{ and } k)$
- Plots of saturated properties (P^s or T^s , ρ , U, h, β , κ , C_P , S, μ , k, and σ)
- Plots comparing analytical and numerical derivatives
- Plots of the translation error, which illustrate the accuracy of the interpolators
 - For example, a (P,T) call to obtain h followed by a (P,h) call to obtain T determines the translation error in T

Sample results for a basic thermodynamic property (ρ_f of h2o versus temperature)

Sample results for a basic transport property (σ of h2on versus pressure)

Sample results for translation error (T of h2on liquid at $P_N = 0.05$)

Relative error between analytical and numerical derivatives $\left(\left(\frac{\partial \rho}{\partial P}\right)_h\right)$ of h2o liquid at P=1.2E6 Pa)

- istate = 5
- Liquid subcooling between 1 and 21 K
- $440 \le T \le 460 \text{ K}$
- Corresponds to interpolation along the edge of a single box in the *tpfh2o* file
- Error is relatively small
- Representative of the minimum error expected in this box

Relative error between analytical and numerical derivatives $\left(\left(\frac{\partial \rho}{\partial P}\right)_h\right)$ of h2o liquid at P=1.1E6 Pa)

- The same input as the previous slide but the pressure has been reduced from 1.2E6 Pa to 1.1E6 Pa
- Corresponds to interpolation at a pressure point midway between adjacent grid points in the *tpfh2o* file
- State varies from 11 K subcooled to 3 K superheated (446 ≤ T ≤ 460 K)
 - Representative of the maximum error expected in the box
- Error gets very large in the metastable region

Relative error between analytical and numerical derivatives $\left(\left(\frac{\partial \rho}{\partial P}\right)_h\right)$ of h2on liquid at P=1.1E6 Pa)

- The same input as the previous slide but with fluid *h2on* instead of fluid *h2o*
- The six points on the LHS are subcooled, the two points on the RHS are superheated
- The relative error is much less than for fluid h2o, particularly in the metastable region
- The relative error in the derivatives is expected to correlate with mass error

Conclusions and recommendations

- The polate programs allow easy access to the fluid properties used by RELAP5-3D for a large database of working fluids
- The polate programs have a variety of potential uses
 - Provide engineers with a convenient way to obtain fluid properties that are consistent with those used by RELAP5-3D
 - Code developers can easily generate graphs of fluid properties for use in debugging
 - The programs can be easily used by other computer codes, providing them with access to the RELAP5-3D database
 - The automatic testing feature can be used to provide assurance that the fluid properties have or have not changed between code versions

Conclusions and recommendations (cont'd)

- The relative error between the analytical and numerical derivatives is expected to correlate with mass error
 - Therefore, the mass error with h2on is expected to be less than with h2o, particularly in the metastable regions
 - RELAP5-3D calculations should be performed to verify if this conclusion is correct
- Source code customers will have access to the polate routines in the next code version
- Executable code customers interested in the polate subroutines should inform INL